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“Memory is the new disk, disk is the new tape” 

• SPEED is EVERYTHING in business 
• Low-latency and Real-time 

– Disk I/O KILLs everything  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Pain Points of Big Data 
(Source: Aberdeen Group Survey)



“Memory is the new disk, disk is the new tape” 
• DRAM becomes BIGGER and CHEAPER 
• CPU is much STRONGER
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Speed
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HW Innovation – NUMA

● NUMA node owns its local memory 
● Different access speed to local/remote 

memory
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HW Innovation – NUMA
Example: Topology of our epic server (likwid-topology) 
(epic.d1.comp.nus.edu.sg)
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HW Innovation – NUMA

•  Related works – NUMA-aware 
– shared-nothing architecture within one 

NUMA server, e.g., Bubba [1], Gamma [2] 
– Hardware islands with UNIX sockets [3] 
– Data shuffling: ring-shuffling [4]  
– Scheduling: marsel query execution [5] 
– Indexing: Buzzard indexing [6] 
– Specific algorithms: sort-merge join [7]
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HW Innovation – HTM
•  Optimistic concurrency control in HW 

level
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HW Innovation – HTM

•  Limitations 
– The transaction size is limited to the size of L1 data 

cache. 
– Cache associativity makes it more prone to false 

conflicts. 
– HTM transactions may be aborted due to interrupt 

events.
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HW Innovation – HTM

•  Related works 
– A database transaction is divided into a set of 

relatively small HTM transactions with timestamp 
ordering (TSO) concurrency control and 
minimizing the false abort probability via data/
index segmentation [8]. 

– protects single data read, and validate/write 
phases using HTM transactions [9]
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HW Innovation – RDMA

•  Remote Direct Memory Access

OS or CPU is not involved!
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HW Innovation – RDMA

•  Comparison with Ethernet TCP/IP

TCP/IP RDMA
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HW Innovation – RDMA

•  Related works 
– Pilaf [10]: multiple one-sided RDMA READ with 

self-verifying data structures for GET operations 
– HERD [11]: reducing latency (RDMA WRITE from 

client, and SEND from server); RDMA-specific 
features (e.g., inlining, selective signaling)
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In-Memory Big Data Management and 
Processing: A Survey [12]
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Facts

Simply moving the storage layer from disk to 
memory will not enable the DB to take full 
advantage of the memory performance. 

Many reasons:  
1) Pointer chasing 
2) Cache unfriendly data structures 
3) System calls 
4) …
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DB without System Calls

The Problem with System Calls

A system call is required every 
time an application requires 
“service” from the OS. 

1. File management 
2. Device management 
3. Communication 
4. Process control 
5. Information maintenance
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The Problem with System Calls

Syscalls have two main problems 

1. Introduce latency 

2. Unsuitable abstraction for 
accessing memory 

• E.g. “read” syscall can read 
from a file (disk/SSD/NFS) or 
a network socket or arbitrary 
file-mapped device 

Application

Library

System Calls

OS Kernel

Hardware

24



System Calls in Databases

Four sources of system calls: 
1. Data accesses 

– open/close/read/write/stat … 
2. Communication among workers 

– socket/listen/accept/connect/sendmgs/recvmsg … 
3. Synchronization among workers 

– pthread_mutex_lock/unlock, sem_wait/sem_post … 
4. Fault tolerance and recovery 

– a mixture of the above 

There are methods to replace most system calls during the 
basic operation of an in-memory database.
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Towards No Syscalls
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Facts

• Memory never enough 
– Memory is still relatively scarce compared to HDD 
– Energy consumption 

• Memory is a significant contributor to the total system power 
– N-minute rule 

• cheaper to put the data in memory if it is accessed every N-minute 
• Cold data – stay on disk 
• Hot data – resident in memory
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Caching vs. “Anti-Caching”

• Common 
– Deal with the same level of storages 

• Difference 
– Assumption about the memory size 

– Different primary data locations 
– Target for different types of systems
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Components of  anti-/caching

• Access tracking 
– Granularity: Tuple vs page 

• Eviction Strategy 
– LRU, MRU, CLOCK, WSCLOCK 

• Book-keeping 
– indexes, filters, page table, etc. 

• Swapping strategy 
– How much, and when
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State-of-the-art Approaches  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Approaches Access Tracking Eviction Strategy Book-keeping Data Swapping

H-Store anti-caching Tuple-level tracking LRU Evicted table and 
index

Block-level swapping

Hekaton Siberia Tuple-level access 
logging

Offline classification Bloom and range 
filter

Tuple-level migration

Spark N/A LRU based on 
insertion time

Hash table Block-level swapping

Cache Systems Tuple-level tracking LRU, approximate 
LRU, etc

N/A N/A

Buffer Management Page-level tracking LRU, MRU, CLOCK, 
etc

Hash table Page-level swapping

OS Paging h/w-assisted page-
level tracking

LRU, NRU, 
WSCLOCK, PPRA, 
etc

Page table Page-level swapping

Efficient OS Paging Tuple-level access 
logging

Offline classification 
and OS Paging

OS-dependent OS-dependent

Access Observer in 
Hyper

h/w-assisted page-
level tracking 

Memory protection

N/A N/A N/A



Access tracking - insights

• If the average tuple size is less than 4-KB 
for doubly-linked LRU list, their memory 
overheads are much higher than that of 
page-table-based method.
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Eviction strategy - insights

• OS-based eviction approaches suffer from poor 
accuracy 
– Coarser-granularity 
– Lack of semantics information 

• Access-logging based offline classification do 
well

33



Book-keeping - insights

• Index and eviction table: higher space overhead 
• Bloom and other filters: quite space efficient 
• Page table: hardware support
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Swapping - insights

• Block/page-level swapping is efficient in terms 
of disk I/O throughput
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User-space vs kernel-space

• At user/application level 
– More semantics information 
– Flexible granularities (tuple, column, row, tables, page) 
– Platform-independence (possible) 

• At kernel level 
– Directly use hardware 
– General 
– Only know pages
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Towards An Efficient General Approach  
        - User-space Virtual Memory Management (UVMM) [13]
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From Jeff  Dean (2012)
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Useful Linux Tools
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