
In-memory Data Management Systems
— Challenges and Opportunities

Zhang Hao
zhangh@comp.nus.edu.sg

National University of Singapore

23 Feb. 2016@RUC
1

Outline

• Introduction
– why in-memory?

• Hareware Innovation
– NUMA
– HTM
– RDMA

• System Calls
• Anti-caching

2

Outline

• Introduction
– why in-memory?

• Hareware Innovation
– NUMA
– HTM
– RDMA

• System Calls
• Anti-caching

3

“Memory is the new disk, disk is the new tape” 

• SPEED is EVERYTHING in business
• Low-latency and Real-time

– Disk I/O KILLs everything  

4

Pain Points of Big Data
(Source: Aberdeen Group Survey)

“Memory is the new disk, disk is the new tape” 
• DRAM becomes BIGGER and CHEAPER
• CPU is much STRONGER

5

$10,000/MB

1980 2000 2014

$1/MB

$0.004/MB

Speed

6

CPU

CoreCore

L1 CacheL1 Cache

L2 CacheL2 Cache

L3 Cache

Main Memory

1ns

4ns

100ns

7ns

NVM 200ns-1
50K

Disk 4M ns Intel Core i5

http://www.google.com.sg/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.codeproject.com/Articles/461038/Why-read-mostly-does-NOT-work-as-it-should&ei=Yxo-VInLJ9WOuATyzoH4Bw&bvm=bv.77412846,d.c2E&psig=AFQjCNGIFg8qfiBMvw5MineReanVlUtZkQ&ust=1413442316814282

Outline

• Introduction
– why in-memory?

• Hareware Innovation
– NUMA
– HTM
– RDMA

• System Calls
• Anti-caching

7

HW Innovation – NUMA

● NUMA node owns its local memory
● Different access speed to local/remote

memory

8

HW Innovation – NUMA
Example: Topology of our epic server (likwid-topology)
(epic.d1.comp.nus.edu.sg)

9

HW Innovation – NUMA

• Related works – NUMA-aware
– shared-nothing architecture within one

NUMA server, e.g., Bubba [1], Gamma [2]
– Hardware islands with UNIX sockets [3]
– Data shuffling: ring-shuffling [4]
– Scheduling: marsel query execution [5]
– Indexing: Buzzard indexing [6]
– Specific algorithms: sort-merge join [7]

10

Outline

• Introduction
– why in-memory?

• Hareware Innovation
– NUMA
– HTM
– RDMA

• System Calls
• Anti-caching

11

HW Innovation – HTM
• Optimistic concurrency control in HW

level

12

HW Innovation – HTM

• Limitations
– The transaction size is limited to the size of L1 data

cache.
– Cache associativity makes it more prone to false

conflicts.
– HTM transactions may be aborted due to interrupt

events.

13

HW Innovation – HTM

• Related works
– A database transaction is divided into a set of

relatively small HTM transactions with timestamp
ordering (TSO) concurrency control and
minimizing the false abort probability via data/
index segmentation [8].

– protects single data read, and validate/write
phases using HTM transactions [9]

14

Outline

• Introduction
– why in-memory?

• Hareware Innovation
– NUMA
– HTM
– RDMA

• System Calls
• Anti-caching

15

HW Innovation – RDMA

• Remote Direct Memory Access

OS or CPU is not involved!

16

HW Innovation – RDMA

• Comparison with Ethernet TCP/IP

TCP/IP RDMA

17

HW Innovation – RDMA

• Related works
– Pilaf [10]: multiple one-sided RDMA READ with

self-verifying data structures for GET operations
– HERD [11]: reducing latency (RDMA WRITE from

client, and SEND from server); RDMA-specific
features (e.g., inlining, selective signaling)

18

In-Memory Big Data Management and
Processing: A Survey [12]

19

Outline

• Introduction
– why in-memory?

• Hareware Innovation
– NUMA
– HTM
– RDMA
– NVRAM

• System Calls
• Anti-caching

20

Facts

Simply moving the storage layer from disk to
memory will not enable the DB to take full
advantage of the memory performance.

Many reasons:
1) Pointer chasing
2) Cache unfriendly data structures
3) System calls
4) …

21

DB without System Calls

The Problem with System Calls

A system call is required every
time an application requires
“service” from the OS.

1. File management
2. Device management
3. Communication
4. Process control
5. Information maintenance

22

Application

Library

System Calls

OS Kernel

Hardware

10/22/2015

23

Virtual
File System

Block I/O
Layer

I/O
Scheduler

Device
Drivers

Hardware

The Problem with System Calls

Syscalls have two main problems

1. Introduce latency

2. Unsuitable abstraction for
accessing memory

• E.g. “read” syscall can read
from a file (disk/SSD/NFS) or
a network socket or arbitrary
file-mapped device

Application

Library

System Calls

OS Kernel

Hardware

24

System Calls in Databases

Four sources of system calls:
1. Data accesses

– open/close/read/write/stat …
2. Communication among workers

– socket/listen/accept/connect/sendmgs/recvmsg …
3. Synchronization among workers

– pthread_mutex_lock/unlock, sem_wait/sem_post …
4. Fault tolerance and recovery

– a mixture of the above

There are methods to replace most system calls during the
basic operation of an in-memory database.

25

Towards No Syscalls

26

Outline

• Introduction
– why in-memory?

• Hareware Innovation
– NUMA
– HTM
– RDMA
– NVRAM

• System Calls
• Anti-caching

27

Facts

• Memory never enough
– Memory is still relatively scarce compared to HDD
– Energy consumption

• Memory is a significant contributor to the total system power
– N-minute rule

• cheaper to put the data in memory if it is accessed every N-minute
• Cold data – stay on disk
• Hot data – resident in memory

28

Caching vs. “Anti-Caching”

• Common
– Deal with the same level of storages

• Difference
– Assumption about the memory size

– Different primary data locations
– Target for different types of systems

29

Components of anti-/caching

• Access tracking
– Granularity: Tuple vs page

• Eviction Strategy
– LRU, MRU, CLOCK, WSCLOCK

• Book-keeping
– indexes, filters, page table, etc.

• Swapping strategy
– How much, and when

30

State-of-the-art Approaches  

31

Approaches Access Tracking Eviction Strategy Book-keeping Data Swapping

H-Store anti-caching Tuple-level tracking LRU Evicted table and
index

Block-level swapping

Hekaton Siberia Tuple-level access
logging

Offline classification Bloom and range
filter

Tuple-level migration

Spark N/A LRU based on
insertion time

Hash table Block-level swapping

Cache Systems Tuple-level tracking LRU, approximate
LRU, etc

N/A N/A

Buffer Management Page-level tracking LRU, MRU, CLOCK,
etc

Hash table Page-level swapping

OS Paging h/w-assisted page-
level tracking

LRU, NRU,
WSCLOCK, PPRA,
etc

Page table Page-level swapping

Efficient OS Paging Tuple-level access
logging

Offline classification
and OS Paging

OS-dependent OS-dependent

Access Observer in
Hyper

h/w-assisted page-
level tracking

Memory protection

N/A N/A N/A

Access tracking - insights

• If the average tuple size is less than 4-KB
for doubly-linked LRU list, their memory
overheads are much higher than that of
page-table-based method.

32

Eviction strategy - insights

• OS-based eviction approaches suffer from poor
accuracy
– Coarser-granularity
– Lack of semantics information

• Access-logging based offline classification do
well

33

Book-keeping - insights

• Index and eviction table: higher space overhead
• Bloom and other filters: quite space efficient
• Page table: hardware support

34

Swapping - insights

• Block/page-level swapping is efficient in terms
of disk I/O throughput

35

User-space vs kernel-space

• At user/application level
– More semantics information
– Flexible granularities (tuple, column, row, tables, page)
– Platform-independence (possible)

• At kernel level
– Directly use hardware
– General
– Only know pages

36

Towards An Efficient General Approach  
 - User-space Virtual Memory Management (UVMM) [13]

37

UVMM

Allocator

Memory Disk

Applications

memory allocation

key-value store, analytics

memory/disk management

• Three-layer Hierarchy

malloc

allocate(addr, size)

logging(addr, size)

page table

From Jeff Dean (2012)

38

Useful Linux Tools

39

• Measure lower-level numbers

Resources
• K.-L. Tan, Q. Cai, B. C. Ooi, W.-F. Wong, C. Yao, H. Zhang: In-memory Databases –

Challenges and Opportunities -- From Software and Hardware Perspectives. ACM
SIGMOD Record, Special Issue on Visionary Ideas in Data Management, Vol. 44, No. 2, 35
– 40, June 2015.

• H. Zhang, G. Chen, B. C. Ooi, K. L. Tan, M. Zhang: In-Memory Big Data Management and
Processing: A Survey. IEEE Transactions on Knowledge and Data Engineering (TKDE),
Vol. 27, No. 7, 1920 – 1948, July 2015.

• D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, Y. M. Teo: A Performance Study of Big Data
on Small Nodes. 41st Int'l Conference on Very Large Data Bases (VLDB), 762 – 773, 2015.

• H. Zhang, G. Chen, B. C. Ooi, W.-F. Wong, S. Wu, Y. Xia: "Anti-Caching"-based Elastic
Memory Management for Big Data. 31st IEEE International Conference on Data
Engineering (ICDE), 1268 – 1279, 2015.

• H. Zhang, et al., “Memepic: Towards a database system architecture without system
calls,” NUS Technical Report, 2014.

• H. Zhang, B. M. Tudor, G. Chen, B. C. Ooi: Efficient In-memory Data Management: An
Analysis. 40th Int'l Conference on Very Large Data Bases (VLDB), 833 – 836, 2014.

• Slides: http://www.comp.nus.edu.sg/~a0095627

40

http://www.comp.nus.edu.sg/~a0095627

References
[1] H. Boral, W. Alexander, L. Clay, G. P. Copeland, S. Danforth, M. J. Franklin, B. E. Hart, M. G. Smith, and P. Valduriez,
“Prototyping bubba, a highly parallel database system,” IEEE Trans. Knowl. Data Eng., vol. 2, no. 1, pp. 4–24, Mar. 1990.
[2] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsiao, and R. Rasmussen, “The gamma database
machine project,” IEEE Trans. Knowl. Data Eng., vol. 2, no. 1, pp. 44–62, Mar. 1990.
[3] D. Porobic, E. Liarou, P. Tozun, and A. Ailamaki, “ATraPos: Adaptive transaction processing on hardware islands,” in
Proc. IEEE 30th Int. Conf. Data Eng., 2014, pp. 688–699.
[4] Y. Li, I. Pandis, R. Muller, V. Raman, and G. M. Lohman, “Numa-aware algorithms: the case of data shuffling,” in Proc.
CIDR, 2013.
[5] V. Leis, P. Boncz, A. Kemper, and T. Neumann, “Morsel-driven parallelism: A NUMA-aware query evaluation framework
for the many-core age,” in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2014, pp. 743–754.
[6] L. M. Maas, T. Kissinger, D. Habich, and W. Lehner, “BUZZARD: A NUMA-aware in-memory indexing system,” in Proc.
ACM SIGMOD Int. Conf. Manag. Data, 2013, pp. 1285–1286.
[7] M.-C. Albutiu, A. Kemper, and T. Neumann, “Massively parallel sort-merge joins in main memory multi-core database
systems,” Proc. VLDB Endowment, vol. 5, pp. 1064–1075, 2012.
[8] V. Leis, A. Kemper, and T. Neumann, “Exploiting hardware transactional memory in main-memory databases,” in Proc.
Int. Conf. Data Eng., 2014, pp. 580–591.
[9] Z. Wang, H. Qian, J. Li, and H. Chen, “Using restricted transactional memory to build a scalable in-memory database,” in
Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 26:1–26:15.
[10] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma reads to build a fast, cpu-efficient key-value store. In USENIX
ATC ’13, pages 103–114, 2013.  
[11] A. Kalia, M. Kaminsky, and D. G. Andersen. Using rdma efficiently for key-value services. In SIGCOMM ’14, pages
295–306, 2014.
[12] H. Zhang, G. Chen, B. C. Ooi, K. L. Tan, M. Zhang: In-Memory Big Data Management and Processing: A Survey. IEEE
Transactions on Knowledge and Data Engineering, Vol. 27, No. 7, 1920-1948, July 2015.
[13] H. Zhang, G. Chen, B. C. Ooi, W.-F. Wong, S. Wu, Y. Xia: "Anti-Caching"-based Elastic Memory Management for Big
Data. 31st IEEE International Conference on Data Engineering (ICDE), 1268 – 1279, 2015.

41

Thanks

42

Q/A

43

