In-memory Data Management Systems — Challenges and Opportunities

Zhang Hao zhangh@comp.nus.edu.sg National University of Singapore

23 Feb. 2016@RUC

1

Outline

- Introduction
 - why in-memory?
- Hareware Innovation
 - NUMA
 - HTM
 - RDMA
- System Calls
- Anti-caching

Outline

- Introduction
 why in-memory?
- Hareware Innovation

 NUMA
 HTM
 RDMA
- System Calls
- Anti-caching

"Memory is the new disk, disk is the new tape"

- **SPEED** is **EVERYTHING** in business
- Low-latency and Real-time
 - Disk I/O KILLs everything

"Memory is the new disk, disk is the new tape"

- DRAM becomes **BIGGER** and **CHEAPER**
- CPU is much **STRONGER**

Multi-Core Architecture (8 x 8core CPU per blade)

Massive parallel scaling with many blades

One blade ~\$50.000 = 1 Enterprise Class Server

64bit address space – 2TB in current servers

100GB/s data throughput

Dramatic decline in price/performance

Speed

Intel Core i5

Outline

- Introduction
 why in-memory?
- Hareware Innovation
 NUMA
 - HTM – RDMA
- System Calls
- Anti-caching

HW Innovation – NUMA

- NUMA node owns its local memory
- Different access speed to local/remote memory

HW Innovation – NUMA

Example: Topology of our epic server (likwid-topology) (epic.d1.comp.nus.edu.sg)

HW Innovation – NUMA

- Related works NUMA-aware
 - shared-nothing architecture within one NUMA server, e.g., Bubba [1], Gamma [2]
 - Hardware islands with UNIX sockets [3]
 - Data shuffling: ring-shuffling [4]
 - Scheduling: marsel query execution [5]
 - Indexing: Buzzard indexing [6]
 - Specific algorithms: sort-merge join [7]

Outline

- Introduction
 why in-memory?
- Hareware Innovation
 NUMA
 - HTM
 - RDMA
- System Calls
- Anti-caching

HW Innovation – HTM

 Optimistic concurrency control in HW level Intel[®] TSX Interface: HLE

HW Innovation – HTM

- Limitations
 - The transaction size is limited to the size of L1 data cache.
 - Cache associativity makes it more prone to false conflicts.
 - HTM transactions may be aborted due to interrupt events.

HW Innovation – HTM

- Related works
 - A database transaction is divided into a set of relatively small HTM transactions with timestamp ordering (TSO) concurrency control and minimizing the false abort probability via data/ index segmentation [8].
 - protects single data read, and validate/write phases using HTM transactions [9]

Outline

- Introduction
 why in-memory?
- Hareware Innovation
 NUMA
 - -HTM

– RDMA

- System Calls
- Anti-caching

HW Innovation – RDMA

• Remote Direct Memory Access

OS or CPU is not involved!

HW Innovation – RDMA

• Comparison with Ethernet TCP/IP

TCP/IP

HW Innovation – RDMA

- Related works
 - Pilaf [10]: multiple one-sided RDMA READ with self-verifying data structures for GET operations
 - HERD [11]: reducing latency (RDMA WRITE from client, and SEND from server); RDMA-specific features (e.g., inlining, selective signaling)

In-Memory Big Data Management and Processing: A Survey [12]

Outline

- Introduction
 - why in-memory?
- Hareware Innovation
 - NUMA
 - -HTM
 - RDMA
 - NVRAM
- System Calls
- Anti-caching

Simply moving the storage layer from disk to memory will not enable the DB to take full advantage of the memory performance.

Many reasons:

- 1) Pointer chasing
- 2) Cache unfriendly data structures
- 3) System calls

The Problem with System Calls

A system call is required every time an application requires "service" from the OS.

- 1. File management
- 2. Device management
- 3. Communication
- 4. Process control
- 5. Information maintenance

The Problem with System Calls

Syscalls have two main problems

- 1. Introduce latency
- 2. Unsuitable abstraction for accessing memory
 - E.g. "read" syscall can read from a file (disk/SSD/NFS) or a network socket or arbitrary file-mapped device

System Calls in Databases

Four sources of system calls:

- 1. Data accesses
 - open/close/read/write/stat ...
- 2. Communication among workers
 - socket/listen/accept/connect/sendmgs/recvmsg …
- 3. Synchronization among workers
 - pthread_mutex_lock/unlock, sem_wait/sem_post ...
- 4. Fault tolerance and recovery
 - a mixture of the above

There are methods to replace *most* system calls during the basic operation of an in-memory database.

Towards No Syscalls

Traditional DB using syscalls

MemepiC with minimal syscalls

Outline

- Introduction
 - why in-memory?
- Hareware Innovation
 - NUMA
 - -HTM
 - RDMA
 - NVRAM
- System Calls
- Anti-caching

Facts

- Memory never enough
 - Memory is still relatively scarce compared to HDD
 - Energy consumption
 - Memory is a significant contributor to the total system power
 - N-minute rule
 - cheaper to put the data in memory if it is accessed every N-minute
 - Cold data stay on disk
 - Hot data resident in memory

Caching vs. "Anti-Caching"

• Common

- Deal with the same level of storages

• Difference

- Assumption about the memory size
- Different primary data locations
- Target for different types of systems

Components of anti-/caching

- Access tracking

 Granularity: Tuple vs page
- Eviction Strategy

 LRU, MRU, CLOCK, WSCLOCK
- Book-keeping
 - indexes, filters, page table, etc.
- Swapping strategy
 How much, and when

State-of-the-art Approaches

Approaches	Access Tracking	Eviction Strategy	Book-keeping	Data Swapping
H-Store anti-caching	Tuple-level tracking	LRU	Evicted table and index	Block-level swapping
Hekaton Siberia	Tuple-level access logging	Offline classification	Bloom and range filter	Tuple-level migration
Spark	N/A	LRU based on insertion time	Hash table	Block-level swapping
Cache Systems	Tuple-level tracking	LRU, approximate LRU, etc	N/A	N/A
Buffer Management	Page-level tracking	LRU, MRU, CLOCK, etc	Hash table	Page-level swapping
OS Paging	h/w-assisted page- level tracking	LRU, NRU, WSCLOCK, PPRA, etc	Page table	Page-level swapping
Efficient OS Paging	Tuple-level access logging	Offline classification and OS Paging	OS-dependent	OS-dependent
Access Observer in Hyper	h/w-assisted page- level tracking Memory protection	N/A	N/A	N/A

Access tracking - insights

• If the average tuple size is less than 4-KB for doubly-linked LRU list, their memory overheads are much higher than that of page-table-based method.

Eviction strategy - insights

- OS-based eviction approaches suffer from poor accuracy
 - Coarser-granularity
 - Lack of semantics information
- Access-logging based offline classification do well

Book-keeping - insights

- Index and eviction table: higher space overhead
- Bloom and other filters: quite space efficient
- Page table: hardware support

Swapping - insights

• Block/page-level swapping is efficient in terms of disk I/O throughput

User-space vs kernel-space

- At user/application level
 - More semantics information
 - Flexible granularities (tuple, column, row, tables, page)
 - Platform-independence (possible)
- At kernel level
 - Directly use **hardware**
 - General
 - Only know pages

Towards An Efficient General Approach

- User-space Virtual Memory Management (UVMM) [13]

• Three-layer Hierarchy

From Jeff Dean (2012)

Numbers Everyone Should Know

L1 cache reference	0.	.5 ns
Branch mispredict	5	ns
L2 cache reference	7	ns
Mutex lock/unlock	25	ns
Main memory reference	100	ns
Compress 1K bytes with Zippy	3,000	ns
Send 2K bytes over 1 Gbps network	20,000	ns
Read 1 MB sequentially from memory	250,000	ns
Round trip within same datacenter	500,000	ns
Disk seek	10,000,000	ns
Read 1 MB sequentially from disk	20,000,000	ns
Send packet CA->Netherlands->CA	150,000,000	ns

Useful Linux Tools

• Measure lower-level numbers

Resources

- K.-L. Tan, Q. Cai, B. C. Ooi, W.-F. Wong, C. Yao, H. Zhang: In-memory Databases Challenges and Opportunities -- From Software and Hardware Perspectives. ACM SIGMOD Record, Special Issue on Visionary Ideas in Data Management, Vol. 44, No. 2, 35 – 40, June 2015.
- H. Zhang, G. Chen, B. C. Ooi, K. L. Tan, M. Zhang: In-Memory Big Data Management and Processing: A Survey. IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol. 27, No. 7, 1920 – 1948, July 2015.
- D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, Y. M. Teo: A Performance Study of Big Data on Small Nodes. 41st Int'l Conference on Very Large Data Bases (VLDB), 762 773, 2015.
- H. Zhang, G. Chen, B. C. Ooi, W.-F. Wong, S. Wu, Y. Xia: "Anti-Caching"-based Elastic Memory Management for Big Data. 31st IEEE International Conference on Data Engineering (ICDE), 1268 – 1279, 2015.
- H. Zhang, et al., "Memepic: Towards a database system architecture without system calls," NUS Technical Report, 2014.
- H. Zhang, B. M. Tudor, G. Chen, B. C. Ooi: Efficient In-memory Data Management: An Analysis. 40th Int'l Conference on Very Large Data Bases (VLDB), 833 836, 2014.
- Slides: <u>http://www.comp.nus.edu.sg/~a0095627</u>

References

[1] H. Boral, W. Alexander, L. Clay, G. P. Copeland, S. Danforth, M. J. Franklin, B. E. Hart, M. G. Smith, and P. Valduriez, "Prototyping bubba, a highly parallel database system," IEEE Trans. Knowl. Data Eng., vol. 2, no. 1, pp. 4–24, Mar. 1990.
[2] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsiao, and R. Rasmussen, "The gamma database machine project," IEEE Trans. Knowl. Data Eng., vol. 2, no. 1, pp. 44–62, Mar. 1990.

[3] D. Porobic, E. Liarou, P. Tozun, and A. Ailamaki, "ATraPos: Adaptive transaction processing on hardware islands," in Proc. IEEE 30th Int. Conf. Data Eng., 2014, pp. 688–699.

[4] Y. Li, I. Pandis, R. Muller, V. Raman, and G. M. Lohman, "Numa-aware algorithms: the case of data shuffling," in Proc. CIDR, 2013.

[5] V. Leis, P. Boncz, A. Kemper, and T. Neumann, "Morsel-driven parallelism: A NUMA-aware query evaluation framework for the many-core age," in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2014, pp. 743–754.

[6] L. M. Maas, T. Kissinger, D. Habich, and W. Lehner, "BUZZARD: A NUMA-aware in-memory indexing system," in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2013, pp. 1285–1286.

[7] M.-C. Albutiu, A. Kemper, and T. Neumann, "Massively parallel sort-merge joins in main memory multi-core database systems," Proc. VLDB Endowment, vol. 5, pp. 1064–1075, 2012.

[8] V. Leis, A. Kemper, and T. Neumann, "Exploiting hardware transactional memory in main-memory databases," in Proc. Int. Conf. Data Eng., 2014, pp. 580–591.

[9] Z. Wang, H. Qian, J. Li, and H. Chen, "Using restricted transactional memory to build a scalable in-memory database," in Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 26:1–26:15.

[10] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma reads to build a fast, cpu-efficient key-value store. In USENIX ATC '13, pages 103–114, 2013.

[11] A. Kalia, M. Kaminsky, and D. G. Andersen. Using rdma efficiently for key-value services. In SIGCOMM '14, pages 295–306, 2014.

[12] H. Zhang, G. Chen, B. C. Ooi, K. L. Tan, M. Zhang: In-Memory Big Data Management and Processing: A Survey. IEEE Transactions on Knowledge and Data Engineering, Vol. 27, No. 7, 1920-1948, July 2015.

[13] H. Zhang, G. Chen, B. C. Ooi, W.-F. Wong, S. Wu, Y. Xia: "Anti-Caching"-based Elastic Memory Management for Big Data. 31st IEEE International Conference on Data Engineering (ICDE), 1268 – 1279, 2015.

Thanks

